Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Transl Oncol ; 39: 101838, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38016356

RESUMEN

As a clinically approved treatment strategy, chemotherapy-mediated tumor suppression has been compromised, and in spite of introducing various kinds of anticancer drugs, cancer eradication with chemotherapy is still impossible. Chemotherapy drugs have been beneficial in improving the prognosis of cancer patients, but after resistance emerged, their potential disappeared. Oxaliplatin (OXA) efficacy in tumor suppression has been compromised by resistance. Due to the dysregulation of pathways and mechanisms in OXA resistance, it is suggested to develop novel strategies for overcoming drug resistance. The targeted delivery of OXA by nanostructures is described here. The targeted delivery of OXA in cancer can be mediated by polymeric, metal, lipid and carbon nanostructures. The advantageous of these nanocarriers is that they enhance the accumulation of OXA in tumor and promote its cytotoxicity. Moreover, (nano)platforms mediate the co-delivery of OXA with drugs and genes in synergistic cancer therapy, overcoming OXA resistance and improving insights in cancer patient treatment in the future. Moreover, smart nanostructures, including pH-, redox-, light-, and thermo-sensitive nanostructures, have been designed for OXA delivery and cancer therapy. The application of nanoparticle-mediated phototherapy can increase OXA's potential in cancer suppression. All of these subjects and their clinical implications are discussed in the current review.

2.
J Trace Elem Med Biol ; 81: 127320, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37913559

RESUMEN

BACKGROUND: Infertility is one of the major factors affecting most people around the world. Short-term exposure to high temperatures can cause hyperthermia, which is one of the causes of male infertility. The aim of this study was to investigate the protective effect of curcumin, vitamins D and E along with Iron (III) oxide nanoparticles (Fe2O3-NPs) and manganese oxide nanoparticles (MnO2-NPs) on semen parameters and its effect on miRNA21 and circRNA0001518 expression. MATERIAL AND METHODS: In this study, the lower part of the rat was exposed to 43 °C for 5 weeks every other day for 5 weeks. Then the animals were killed. Tissue samples were collected for sperm parameters analysis, and tissue samples were taken for evaluation of apoptosis levels in germ cells, and RNA extraction in order to examine the expression of Bax, Bcl-2, miRNA, and CircRNA genes. RESULTS: The results of this study showed that administration of curcumin, vitamin D, and vitamin E with Fe2O3-NPs and MnO2-NPs can improve the parameters of semen, Bax gene expression, Bcl-2 as well as miRNA and CircRNA in rats with testicular hyperthermia. In addition, curcumin by reducing the toxicity of Fe2O3 nanoparticles was able to reduce its negative effects and also reduce apoptosis in germ cells. This decrease in apoptosis was attributed to decreased Bcl-2 gene expression and increased expression of Bax, miRNA-21, and circRNA0001518. CONCLUSION: All the results of this study confirmed that Fe2O3-NPs and Mno2-NPs containing antioxidants or vitamins are useful in improving fertility in rats due to scrotal hyperthermia. Although Fe2O3-NPs and Mno2-NPs containing both antioxidants and vitamins had a greater effect on improving fertility and reducing the toxic effects of nanoparticles.


Asunto(s)
Curcumina , Hipertermia Inducida , Nanopartículas del Metal , MicroARNs , Nanopartículas , Humanos , Ratas , Masculino , Animales , Vitamina D , Compuestos de Manganeso , Óxidos/toxicidad , Curcumina/farmacología , ARN Circular , Hierro , MicroARNs/genética , Proteína X Asociada a bcl-2 , Nanopartículas del Metal/toxicidad , Semen , Antioxidantes , Vitaminas
3.
Environ Res ; 237(Pt 2): 117027, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659647

RESUMEN

The latest advancements in oncology involves the creation of multifunctional nanostructures. The integration of nanoparticles into the realm of cancer therapy has brought about a transformative shift, revolutionizing the approach to addressing existing challenges and limitations in tumor elimination. This is particularly crucial in combating the emergence of resistance, which has significantly undermined the effectiveness of treatments like chemotherapy and radiotherapy. GO stands as a carbon-derived nanoparticle that is increasingly finding utility across diverse domains, notably in the realm of biomedicine. The utilization of GO nanostructures holds promise in the arena of oncology, enabling precise transportation of drugs and genetic material to targeted sites. GO nanomaterials offer the opportunity to enhance the pharmacokinetic behavior and bioavailability of drugs, with documented instances of these nanocarriers elevating drug accumulation at the tumor location. The GO nanostructures encapsulate genes, shielding them from degradation and facilitating their uptake within cancer cells, thereby promoting efficient gene silencing. The capability of GO to facilitate phototherapy has led to notable advancements in reducing tumor progression. By PDT and PTT combination, GO nanomaterials hold the capacity to diminish tumorigenesis. GO nanomaterials have the potential to trigger both cellular and innate immunity, making them promising contenders for vaccine development. Additionally, types of GO nanoparticles that respond to specific stimuli have been applied in cancer eradication, as well as for the purpose of cancer detection and biomarker diagnosis. Endocytosis serves as the mechanism through which GO nanomaterials are internalized. Given these advantages, the utilization of GO nanomaterials for tumor elimination comes highly recommended.

4.
Int J Biol Macromol ; 242(Pt 3): 124935, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37230442

RESUMEN

The field of nanomedicine has provided a fresh approach to cancer treatment by addressing the limitations of current therapies and offering new perspectives on enhancing patients' prognoses and chances of survival. Chitosan (CS) is isolated from chitin that has been extensively utilized for surface modification and coating of nanocarriers to improve their biocompatibility, cytotoxicity against tumor cells, and stability. HCC is a prevalent kind of liver tumor that cannot be adequately treated with surgical resection in its advanced stages. Furthermore, the development of resistance to chemotherapy and radiotherapy has caused treatment failure. The targeted delivery of drugs and genes can be mediated by nanostructures in treatment of HCC. The current review focuses on the function of CS-based nanostructures in HCC therapy and discusses the newest advances of nanoparticle-mediated treatment of HCC. Nanostructures based on CS have the capacity to escalate the pharmacokinetic profile of both natural and synthetic drugs, thus improving the effectiveness of HCC therapy. Some experiments have displayed that CS nanoparticles can be deployed to co-deliver drugs to disrupt tumorigenesis in a synergistic way. Moreover, the cationic nature of CS makes it a favorable nanocarrier for delivery of genes and plasmids. The use of CS-based nanostructures can be harnessed for phototherapy. Additionally, the incur poration of ligands including arginylglycylaspartic acid (RGD) into CS can elevate the targeted delivery of drugs to HCC cells. Interestingly, smart CS-based nanostructures, including ROS- and pH-sensitive nanoparticles, have been designed to provide cargo release at the tumor site and enhance the potential for HCC suppression.


Asunto(s)
Carcinoma Hepatocelular , Quitosano , Neoplasias Hepáticas , Nanopartículas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Quitosano/química , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Medicina de Precisión , Nanopartículas/uso terapéutico , Nanopartículas/química
5.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166714, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37028606

RESUMEN

Western lifestyle contributes to an overt increase in the prevalence of metabolic anomalies including diabetes mellitus (DM) and obesity. Prevalence of DM is rapidly growing worldwide, affecting many individuals in both developing and developed countries. DM is correlated with the onset and development of complications with diabetic nephropathy (DN), diabetic cardiomyopathy (DC) and diabetic neuropathy being the most devastating pathological events. On the other hand, Nrf2 is a regulator for redox balance in cells and accounts for activation of antioxidant enzymes. Dysregulation of Nrf2 signaling has been shown in various human diseases such as DM. This review focuses on the role Nrf2 signaling in major diabetic complications and targeting Nrf2 for treatment of this disease. These three complications share similarities including the presence of oxidative stress, inflammation and fibrosis. Onset and development of fibrosis impairs organ function, while oxidative stress and inflammation can evoke damage to cells. Activation of Nrf2 signaling significantly dampens inflammation and oxidative damage, and is beneficial in retarding interstitial fibrosis in diabetic complications. SIRT1 and AMPK are among the predominant pathways to upregulate Nrf2 expression in the amelioration of DN, DC and diabetic neuropathy. Moreover, certain therapeutic agents such as resveratrol and curcumin, among others, have been employed in promoting Nrf2 expression to upregulate HO-1 and other antioxidant enzymes in the combat of oxidative stress in the face of DM.


Asunto(s)
Cardiomiopatías , Complicaciones de la Diabetes , Diabetes Mellitus , Nefropatías Diabéticas , Neuropatías Diabéticas , Humanos , Nefropatías Diabéticas/patología , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/uso terapéutico , Neuropatías Diabéticas/etiología , Neuropatías Diabéticas/genética , Fibrosis , Inflamación
6.
Bioeng Transl Med ; 8(1): e10353, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684065

RESUMEN

Urological cancers are among the most common malignancies around the world. In particular, bladder cancer severely threatens human health due to its aggressive and heterogeneous nature. Various therapeutic modalities have been considered for the treatment of bladder cancer although its prognosis remains unfavorable. It is perceived that treatment of bladder cancer depends on an interdisciplinary approach combining biology and engineering. The nanotechnological approaches have been introduced in the treatment of various cancers, especially bladder cancer. The current review aims to emphasize and highlight possible applications of nanomedicine in eradication of bladder tumor. Nanoparticles can improve efficacy of drugs in bladder cancer therapy through elevating their bioavailability. The potential of genetic tools such as siRNA and miRNA in gene expression regulation can be boosted using nanostructures by facilitating their internalization and accumulation at tumor sites and cells. Nanoparticles can provide photodynamic and photothermal therapy for ROS overgeneration and hyperthermia, respectively, in the suppression of bladder cancer. Furthermore, remodeling of tumor microenvironment and infiltration of immune cells for the purpose of immunotherapy are achieved through cargo-loaded nanocarriers. Nanocarriers are mainly internalized in bladder tumor cells by endocytosis, and proper design of smart nanoparticles such as pH-, redox-, and light-responsive nanocarriers is of importance for targeted tumor therapy. Bladder cancer biomarkers can be detected using nanoparticles for timely diagnosis of patients. Based on their accumulation at the tumor site, they can be employed for tumor imaging. The clinical translation and challenges are also covered in current review.

7.
Bioeng Transl Med ; 8(1): e10325, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684100

RESUMEN

Green chemistry has been a growing multidisciplinary field in recent years showing great promise in biomedical applications, especially for cancer therapy. Chitosan (CS) is an abundant biopolymer derived from chitin and is present in insects and fungi. This polysaccharide has favorable characteristics, including biocompatibility, biodegradability, and ease of modification by enzymes and chemicals. CS-based nanoparticles (CS-NPs) have shown potential in the treatment of cancer and other diseases, affording targeted delivery and overcoming drug resistance. The current review emphasizes on the application of CS-NPs for the delivery of a chemotherapeutic agent, doxorubicin (DOX), in cancer therapy as they promote internalization of DOX in cancer cells and prevent the activity of P-glycoprotein (P-gp) to reverse drug resistance. These nanoarchitectures can provide co-delivery of DOX with antitumor agents such as curcumin and cisplatin to induce synergistic cancer therapy. Furthermore, co-loading of DOX with siRNA, shRNA, and miRNA can suppress tumor progression and provide chemosensitivity. Various nanostructures, including lipid-, carbon-, polymeric- and metal-based nanoparticles, are modifiable with CS for DOX delivery, while functionalization of CS-NPs with ligands such as hyaluronic acid promotes selectivity toward tumor cells and prevents DOX resistance. The CS-NPs demonstrate high encapsulation efficiency and due to protonation of amine groups of CS, pH-sensitive release of DOX can occur. Furthermore, redox- and light-responsive CS-NPs have been prepared for DOX delivery in cancer treatment. Leveraging these characteristics and in view of the biocompatibility of CS-NPs, we expect to soon see significant progress towards clinical translation.

8.
J Control Release ; 351: 50-80, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35934254

RESUMEN

The site-specific delivery of antitumor agents is of importance for providing effective cancer suppression. Poor bioavailability of anticancer compounds and the presence of biological barriers prevent their accumulation in tumor sites. These obstacles can be overcome using liposomal nanostructures. The challenges in cancer chemotherapy and stimuli-responsive nanocarriers are first described in the current review. Then, stimuli-responsive liposomes including pH-, redox-, enzyme-, light-, thermo- and magneto-sensitive nanoparticles are discussed and their potential for delivery of anticancer drugs is emphasized. The pH- or redox-sensitive liposomes are based on internal stimulus and release drug in response to a mildly acidic pH and GSH, respectively. The pH-sensitive liposomes can mediate endosomal escape via proton sponge. The multifunctional liposomes responsive to both redox and pH have more capacity in drug release at tumor site compared to pH- or redox-sensitive alone. The magnetic field and NIR irradiation can be exploited for external stimulation of liposomes. The light-responsive liposomes release drugs when they are exposed to irradiation; thermosensitive-liposomes release drugs at a temperature of >40 °C when there is hyperthermia; magneto-responsive liposomes release drugs in presence of magnetic field. These smart nanoliposomes also mediate co-delivery of drugs and genes in synergistic cancer therapy. Due to lack of long-term toxicity of liposomes, they can be utilized in near future for treatment of cancer patients.


Asunto(s)
Antineoplásicos , Hipertermia Inducida , Neoplasias , Humanos , Liposomas/química , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Neoplasias/tratamiento farmacológico , Concentración de Iones de Hidrógeno
9.
J Exp Clin Cancer Res ; 41(1): 214, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35773731

RESUMEN

BACKGROUND: One of the most malignant tumors in men is prostate cancer that is still incurable due to its heterogenous and progressive natures. Genetic and epigenetic changes play significant roles in its development. The RNA molecules with more than 200 nucleotides in length are known as lncRNAs and these epigenetic factors do not encode protein. They regulate gene expression at transcriptional, post-transcriptional and epigenetic levels. LncRNAs play vital biological functions in cells and in pathological events, hence their expression undergoes dysregulation. AIM OF REVIEW: The role of epigenetic alterations in prostate cancer development are emphasized here. Therefore, lncRNAs were chosen for this purpose and their expression level and interaction with other signaling networks in prostate cancer progression were examined. KEY SCIENTIFIC CONCEPTS OF REVIEW: The aberrant expression of lncRNAs in prostate cancer has been well-documented and progression rate of tumor cells are regulated via affecting STAT3, NF-κB, Wnt, PI3K/Akt and PTEN, among other molecular pathways. Furthermore, lncRNAs regulate radio-resistance and chemo-resistance features of prostate tumor cells. Overexpression of tumor-promoting lncRNAs such as HOXD-AS1 and CCAT1 can result in drug resistance. Besides, lncRNAs can induce immune evasion of prostate cancer via upregulating PD-1. Pharmacological compounds such as quercetin and curcumin have been applied for targeting lncRNAs. Furthermore, siRNA tool can reduce expression of lncRNAs thereby suppressing prostate cancer progression. Prognosis and diagnosis of prostate tumor at clinical course can be evaluated by lncRNAs. The expression level of exosomal lncRNAs such as lncRNA-p21 can be investigated in serum of prostate cancer patients as a reliable biomarker.


Asunto(s)
Neoplasias de la Próstata , ARN Largo no Codificante , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
10.
Phytother Res ; 36(1): 189-213, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34697839

RESUMEN

Curcumin is a phytochemical isolated from Curcuma longa with potent tumor-suppressor activity, which has shown significant efficacy in pre-clinical and clinical studies. Curcumin stimulates cell death, triggers cycle arrest, and suppresses oncogenic pathways, thereby suppressing cancer progression. Cisplatin (CP) stimulates DNA damage and apoptosis in cancer chemotherapy. However, CP has adverse effects on several organs of the body, and drug resistance is frequently observed. The purpose of the present review is to show the function of curcumin in decreasing CP's adverse impacts and improving its antitumor activity. Curcumin administration reduces ROS levels to prevent apoptosis in normal cells. Furthermore, curcumin can inhibit inflammation via down-regulation of NF-κB to maintain the normal function of organs. Curcumin and its nanoformulations can reduce the hepatoxicity, neurotoxicity, renal toxicity, ototoxicity, and cardiotoxicity caused by CP. Notably, curcumin potentiates CP cytotoxicity via mediating cell death and cycle arrest. Besides, curcumin suppresses the STAT3 and NF-ĸB as tumor-promoting pathways, to enhance CP sensitivity and prevent drug resistance. The targeted delivery of curcumin and CP to tumor cells can be mediated nanostructures. In addition, curcumin derivatives are also able to reduce CP-mediated side effects, and increase CP cytotoxicity against various cancer types.


Asunto(s)
Antineoplásicos , Curcumina , Neoplasias , Antineoplásicos/farmacología , Apoptosis , Cisplatino/farmacología , Curcumina/farmacología , Humanos , Neoplasias/tratamiento farmacológico
11.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769099

RESUMEN

As a multifactorial disease, treatment of cancer depends on understanding unique mechanisms involved in its progression. The cancer stem cells (CSCs) are responsible for tumor stemness and by enhancing colony formation, proliferation as well as metastasis, and these cells can also mediate resistance to therapy. Furthermore, the presence of CSCs leads to cancer recurrence and therefore their complete eradication can have immense therapeutic benefits. The present review focuses on targeting CSCs by natural products in cancer therapy. The growth and colony formation capacities of CSCs have been reported can be attenuated by the dietary agents. These compounds can induce apoptosis in CSCs and reduce tumor migration and invasion via EMT inhibition. A variety of molecular pathways including STAT3, Wnt/ß-catenin, Sonic Hedgehog, Gli1 and NF-κB undergo down-regulation by dietary agents in suppressing CSC features. Upon exposure to natural agents, a significant decrease occurs in levels of CSC markers including CD44, CD133, ALDH1, Oct4 and Nanog to impair cancer stemness. Furthermore, CSC suppression by dietary agents can enhance sensitivity of tumors to chemotherapy and radiotherapy. In addition to in vitro studies, as well as experiments on the different preclinical models have shown capacity of natural products in suppressing cancer stemness. Furthermore, use of nanostructures for improving therapeutic impact of dietary agents is recommended to rapidly translate preclinical findings for clinical use.


Asunto(s)
Neoplasias/dietoterapia , Células Madre Neoplásicas , Fitoquímicos/uso terapéutico , Fitoterapia , Extractos Vegetales/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico
12.
Food Chem Toxicol ; 157: 112576, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34571052

RESUMEN

Cancer is the second leading cause of death worldwide. Majority of recent research efforts in the field aim to address why cancer resistance to therapy develops and how to overcome or prevent it. In line with this, novel anti-cancer compounds are desperately needed for chemoresistant cancer cells. Phytochemicals, in view of their pharmacological activities and capacity to target various molecular pathways, are of great interest in the development of therapeutics against cancer. Plant-derived-natural products have poor bioavailability which restricts their anti-tumor activity. Gallic acid (GA) is a phenolic acid exclusively found in natural sources such as gallnut, sumac, tea leaves, and oak bark. In this review, we report on the most recent research related to anti-tumor activities of GA in various cancers with a focus on its underlying molecular mechanisms and cellular pathwaysthat that lead to apoptosis and migration of cancer cells. GA down-regulates the expression of molecular pathways involved in cancer progression such as PI3K/Akt. The co-administration of GA with chemotherapeutic agents shows improvements in suppressing cancer malignancy. Various nano-vehicles such as organic- and inorganic nano-materials have been developed for targeted delivery of GA at the tumor site. Here, we suggest that nano-vehicles improve GA bioavailability and its ability for tumor suppression.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Ácido Gálico/uso terapéutico , Sistema de Administración de Fármacos con Nanopartículas , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Apoptosis/efectos de los fármacos , Ácido Gálico/administración & dosificación , Humanos , Sistema de Administración de Fármacos con Nanopartículas/administración & dosificación , Sistema de Administración de Fármacos con Nanopartículas/uso terapéutico
13.
Molecules ; 26(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921908

RESUMEN

The failure of chemotherapy is a major challenge nowadays, and in order to ensure effective treatment of cancer patients, it is of great importance to reveal the molecular pathways and mechanisms involved in chemoresistance. Cisplatin (CP) is a platinum-containing drug with anti-tumor activity against different cancers in both pre-clinical and clinical studies. However, drug resistance has restricted its potential in the treatment of cancer patients. CP can promote levels of free radicals, particularly reactive oxygen species (ROS) to induce cell death. Due to the double-edged sword role of ROS in cancer as a pro-survival or pro-death mechanism, ROS can result in CP resistance. In the present review, association of ROS with CP sensitivity/resistance is discussed, and in particular, how molecular pathways, both upstream and downstream targets, can affect the response of cancer cells to CP chemotherapy. Furthermore, anti-tumor compounds, such as curcumin, emodin, chloroquine that regulate ROS and related molecular pathways in increasing CP sensitivity are described. Nanoparticles can provide co-delivery of CP with anti-tumor agents and by mediating photodynamic therapy, and induce ROS overgeneration to trigger CP sensitivity. Genetic tools, such as small interfering RNA (siRNA) can down-regulate molecular pathways such as HIF-1α and Nrf2 to promote ROS levels, leading to CP sensitivity. Considering the relationship between ROS and CP chemotherapy, and translating these findings to clinic can pave the way for effective treatment of cancer patients.


Asunto(s)
Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Humanos , Transducción de Señal/efectos de los fármacos
14.
Gulf J Oncolog ; 1(35): 7-13, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33716207

RESUMEN

INTRODUCTION: Lung cancer is the most deadly and sumptuous cancer across the globe. Cancer occurrence is increasing progressively and there is no ideal cure yet. Therefore, new therapeutic areas are needed. The use of herbal extracts due to its properties such as antioxidant activity, anti-proliferative effect, and few side effects can be promising in the treatment of cancer. This study aimed to compare the effect of Echinophora platyloba DC. and Cordia myxa L extracts on apoptosis induction in A549 cancer cells. MATERIALS AND METHODS: In this experiment, the A549 cell line was first cultured in DMEM medium containing 10% FBS and then treated with different concentrations of both compounds. MTT assay was performed to determine IC50 and to compare the viability of cells treated with different concentrations of Echinophora platyloba DC. and Cordia myxa L seed on days 1, 3 and 5. QRT-PCR test was used to investigate the effects of Echinophora platyloba DC. and Cordia myxa L with IC50 on apoptosis induction. RESULTS: MTT results showed that both plant extracts resulted in cell death and decreased viability of lung cancer cells. But the percentage of viability decreased by Echinophora platyloba DC. was more. Also, Echinophora platyloba DC. significantly increased the expression of Bax, P53 and Bad apoptotic genes and decreased the expression of Bcl2 gene, which induces apoptotic death and the cytotoxic effect of Echinophora platyloba DC. over Cordia myxa L. CONCLUSION: In comparing the effects of these two extracts Echinophora platyloba DC. was more effective than Cordia myxa L and had greater cytotoxicity on A549 cancerous cells in a lesser concentration and could be an appropriate drug candidate for the treatment of lung cancer.


Asunto(s)
Neoplasias Pulmonares/genética , Extractos Vegetales/química , Células A549 , Apoptosis , Humanos , Neoplasias Pulmonares/patología
15.
Phytother Res ; 35(1): 155-179, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33507609

RESUMEN

In respect to the enhanced incidence rate of cancer worldwide, studies have focused on cancer therapy using novel strategies. Chemotherapy is a common strategy in cancer therapy, but its adverse effects and chemoresistance have limited its efficacy. So, attempts have been directed towards minimally invasive cancer therapy using plant derived-natural compounds. Cryptotanshinone (CT) is a component of salvia miltiorrihiza Bunge, well-known as Danshen and has a variety of therapeutic and biological activities such as antioxidant, anti-inflammatory, anti-diabetic and neuroprotective. Recently, studies have focused on anti-tumor activity of CT against different cancers. Notably, this herbal compound is efficient in cancer therapy by targeting various molecular signaling pathways. In the present review, we mechanistically describe the anti-tumor activity of CT with an emphasis on molecular signaling pathways. Then, we evaluate the potential of CT in cancer immunotherapy and enhancing the efficacy of chemotherapy by sensitizing cancer cells into anti-tumor activity of chemotherapeutic agents, and elevating accumulation of anti-tumor drugs in cancer cells. Finally, we mention strategies to enhance the anti-tumor activity of CT, for instance, using nanoparticles to provide targeted drug delivery.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Fenantrenos/uso terapéutico , Animales , Antineoplásicos/farmacología , Humanos , Fenantrenos/farmacología
16.
Curr Mol Pharmacol ; 14(6): 1093-1111, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33494691

RESUMEN

Breast cancer is one of the leading causes of death worldwide. Breast cancer cells demonstrate uncontrolled proliferation and high metastatic capacity. They can obtain resistance to chemotherapy and radiotherapy. This has resulted in troublesome treatment of breast cancer. Nature as a rich source of plant derived-natural products with anti-tumor activity can be of interest in breast cancer therapy. Ginsenosides are triterpenoid saponins and considered as secondary metabolites exclusively found in Panax species. From immemorial times, ginsenosides have been applied in the treatment of various disorders such as diabetes, inflammatory diseases, neurological disorders, and particularly, cancer. In the present review, we highlight the anti-tumor activity of ginsenosides against breast cancer cells. Ginsenosides are able to induce apoptosis and cell cycle arrest. They interfere with breast cancer metastasis via inhibiting epithelial-to-mesenchymal transition, matrix metalloproteinase proteins and angiogenesis. Ginsenosides can promote the efficacy of chemotherapy via suppressing migration and proliferation. Molecular pathways such as phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), insulin-like growth factor-1, Wnt, microRNAs and long non-coding RNAs are affected by ginsenosides in suppressing breast cancer malignancy. Consequently, ginsenosides are versatile compounds in breast cancer therapy by suppressing the growth and invasion, as well as promoting their sensitivity to chemotherapy.


Asunto(s)
Neoplasias de la Mama , Ginsenósidos , Panax , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal , Femenino , Ginsenósidos/metabolismo , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Humanos , Panax/metabolismo , Fosfatidilinositol 3-Quinasas
17.
ACS Comb Sci ; 22(12): 669-700, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33095554

RESUMEN

Chemotherapy using natural compounds, such as resveratrol, curcumin, paclitaxel, docetaxel, etoposide, doxorubicin, and camptothecin, is of importance in cancer therapy because of the outstanding therapeutic activity and multitargeting capability of these compounds. However, poor solubility and bioavailability of natural compounds have limited their efficacy in cancer therapy. To circumvent this hurdle, nanocarriers have been designed to improve the antitumor activity of the aforementioned compounds. Nevertheless, cancer treatment is still a challenge, demanding novel strategies. It is well-known that a combination of natural products and gene therapy is advantageous over monotherapy. Delivery of multiple therapeutic agents/small interfering RNA (siRNA) as a potent gene-editing tool in cancer therapy can maximize the synergistic effects against tumor cells. In the present review, co-delivery of natural compounds/siRNA using nanovehicles are highlighted to provide a backdrop for future research.


Asunto(s)
Productos Biológicos/química , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , ARN Interferente Pequeño/química , Animales , Portadores de Fármacos/química , Humanos
18.
Pharmacol Res ; 160: 105199, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32942019

RESUMEN

Gastrointestinal (GI) cancers with a high incidence rate and adverse complications are related to severe morbidity and mortality around the world. MicroRNAs (miRs) are potential regulators of cellular events, and their aberrant expression occurs in gastrointestinal (GI) cancers. Increasing evidence demonstrates that plant derived-natural compounds are capable of regulation of miRs in cancer therapy. Curcumin is a naturally occurring nutraceutical compound isolated from curcuma longa and possesses valuable pharmacological activities in which anti-tumor activity is of importance, since in suppressing cancer malignancy, curcumin can target various molecular pathways such as STAT3, PTEN, PI3K/Akt, Wnt, and so on. In the present review, our aim is to shed some light on regulation of miRs by curcumin in GI cancers, and demonstrate how regulation of miRs by curcumin can affect proliferation and metastasis of GI cancers. Noteworthy, curcumin affects down-stream targets such as PTEN, VEGFA, PI3K/Akt and so on that are responsible for growth and migration of GI cancers via regulation of miRs. Affected miRs, and their down-stream targets are discussed in this review in a mechanistic way. Besides, challenges for clinical translation of current studies are described.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Curcumina/farmacología , Neoplasias Gastrointestinales/tratamiento farmacológico , MicroARNs/efectos de los fármacos , Animales , Antineoplásicos Fitogénicos/uso terapéutico , Curcuma/química , Curcumina/uso terapéutico , Neoplasias Gastrointestinales/genética , Humanos , MicroARNs/genética , Transducción de Señal/efectos de los fármacos
19.
Life Sci ; 256: 117984, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32593707

RESUMEN

Dealing with cancer is of importance due to enhanced incidence rate of this life-threatening disorder. Chemotherapy is an ideal candidate in overcoming and eradication of cancer. To date, various chemotherapeutic agents have been applied in cancer therapy and paclitaxel (PTX) is one of them. PTX is a key member of taxane family with potential anti-tumor activity against different cancers. Notably, PTX has demonstrated excellent proficiency in elimination of cancer in clinical trials. This chemotherapeutic agent is isolated from Taxus brevifolia, and is a tricyclic diterpenoid. However, resistance of cancer cells into PTX chemotherapy has endangered its efficacy. Besides, administration of PTX is associated with a number of side effects such as neurotoxicity, hepatotoxicity, cardiotoxicity and so on, demanding novel strategies in obviating PTX issues. Curcumin is a pharmacological compound with diverse therapeutic effects including anti-tumor, anti-oxidant, anti-inflammatory, anti-diabetic and so on. In the current review, we demonstrate that curcumin, a naturally occurring nutraceutical compound is able to enhance anti-tumor activity of PTX against different cancers. Besides, curcumin administration reduces adverse effects of PTX due to its excellent pharmacological activities. These topics are discussed with an emphasis on molecular pathways to provide direction for further studies in revealing other signaling networks.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Curcumina/administración & dosificación , Neoplasias/tratamiento farmacológico , Paclitaxel/administración & dosificación , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Antineoplásicos Fitogénicos/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Línea Celular Tumoral , Curcumina/efectos adversos , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Paclitaxel/efectos adversos
20.
Biomedicines ; 8(5)2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380783

RESUMEN

Cancer therapy is a growing field, and annually, a high number of research is performed to develop novel antitumor drugs. Attempts to find new antitumor drugs continue, since cancer cells are able to acquire resistance to conventional drugs. Natural chemicals can be considered as promising candidates in the field of cancer therapy due to their multiple-targeting capability. The nobiletin (NOB) is a ubiquitous flavone isolated from Citrus fruits. The NOB has a variety of pharmacological activities, such as antidiabetes, antioxidant, anti-inflammatory, hepatoprotective, and neuroprotective. Among them, the antitumor activity of NOB has been under attention over recent years. In this review, we comprehensively describe the efficacy of NOB in cancer therapy. NOB induces apoptosis and cell cycle arrest in cancer cells. It can suppress migration and invasion of cancer cells via the inhibition of epithelial-to-mesenchymal transition (EMT) and EMT-related factors such as TGF-ß, ZEB, Slug, and Snail. Besides, NOB inhibits oncogene factors such as STAT3, NF-κB, Akt, PI3K, Wnt, and so on. Noteworthy, onco-suppressor factors such as microRNA-7 and -200b undergo upregulation by NOB in cancer therapy. These onco-suppressor and oncogene pathways and mechanisms are discussed in this review.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA